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And God said unto the animals: “Be fruitful and multiply.”

But the snake answered: “How could I? I am an adder!™*

ARGUMENT

The article focuses on three different notions of polynomiality for maps of mod-
ules. In addition to the polynomial maps studied by Eilenberg and Mac Lane, and
the strict polynomial maps (“lois polynomes”) considered by Roby, we introduce
numerical maps of modules and investigate their properties.

Even though our notion require the existence of binomial coefficients in the
base ring, we argue that it constitutes the correct way to generalise Eilenberg and
Mac Lane’s original definition, of polynomial maps on abelian groups, to modules
over more general rings. The main theorem propounds that our maps admit a
description word by word corresponding to Roby’s definition of strict polynomial
maps.

Eilenberg and Mac Lane ([2]) studied polynomial maps of abelian groups. While
their notion will remain valid for modules over any ring, it will clearly be
deficient, for the simple and obvious reason that it does not take scalar multi-
plication into account.

Roby ([7]) was then led to consider strict polynomial maps of arbitrary mod-
ules. This concept is, as the name suggests, stronger, and it carries the advant-
age of making sense for an arbitrary commutative base ring.

In this note, we introduce numerical maps (Definition 5), which we believe
furnish the proper way to extend Eilenberg and Mac Lane’s weak notion of
polynomiality to more general base rings, handling, as it does, scalar multi-
plication in a natural way. A key point is that the base ring is required to
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In some retellings of this myth, it is further reported that God constructed a wooden table
for the snakes to crawl upon, since even adders can multiply on a log table. God is not assumed
to be familiar with tensor products.
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possess binomial coefhicients; such rings are commonly known as binomial or
numerical (Ekedahl’s terminology; see [3]). They were introduced by Hall ([6]).

We shall display the dependence of numerical maps on their deviations
(Theorem 8), and also exhibit the universal numerical map of each degree
(Theorem 4). A remarkable fact will ensue, namely, that numerical maps fit,
like hand in glove, into the frame-work Roby erected for strict polynomial
maps.

Recall that he defines a strict polynomial map of B-modules to be a natural
transformation

¢: M®— —> NQ®gp —

between functors p€Alg — Get, where p€Alg denotes the category of com-
mutative, unital algebras over the base ring B. An extremely broad and all-
encompassing notion of polynomial maps as types of natural transformations
(Definition 7) can be extracted as the essence of this.

Our final theorem (Theorem 10) will provide a beautiful and unexpected
unification of the two notions:

TueOREM. — The map ¢: M — N is numerical of degree n if and only if it can be
extended to a natural transformation

¢: M®p — — NQp —

of functors gNAlg — Get of degree n, where gNAly denotes the category of numerical
algebras over the ring B.

One point may deserve further elaboration. Is the existence of binomial
coeflicients a necessary evil? Would it be conceivable to extend the notion
of polynomial map to modules over any ring? The question is justified, and
especially so by the recent attempts by Gaudier & Hartl [5] to propose a notion
of quadratic map valid for modules over arbitrary base rings.

To this we reply the following. Consider, for a moment, the original case
of Eilenberg and Mac Lane: a map ¢: M — N of Z-modules, that is, abelian
groups. In this case, there can be no doubt concerning the proper definition
of polynomial map, and, by virtue of the result just indicated, such a map (of
degree n) is equivalent to a natural transformation

0 M®z — > N®z—

(of degree n). These functors are defined on the category zM2Alg, which is
simply the category of numerical rings. Thus, even in the case of abelian
groups, where no binomial coefhicients a priori appear, numerical rings will
nonetheless enter in a canonical fashion to render the definition akin to Roby’s.
This provides quite convincing evidence that our notion is the correct one.

In subsequent articles, we purport to employ numerical maps in order to
define a corresponding notion of numerical functor.

This research was carried out at Stockholm University under the emin-
ent supervision of Professor Torsten Ekedahl. We would also like to thank
Dr. Christine Vespa for innumerous and invaluable comments on the manu-
script.
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§0. PRELIMINARIES

For the entirety of this article, B shall denote a fixed base ring of scalars,
assumed commutative and unital. All modules, homomorphisms, and tensor
products shall be taken over this B, unless otherwise stated. We let Mod =
P00 denote the category of (unital) modules over this ring.

A map of modules shall always denote an arbitrary map — in general non-
linear. On those rare occasions when a linear map is actually under consider-
ation, we shall rather ostensibly proclaim it a “homomorphism”.

Presumably, it was Eilenberg and Mac Lane who first studied non-additive
maps of abelian groups, introducing in [2] (section 8) the so-called deviations of
a map. Let [#] denote the set {1,...,n}.

DeriNtTION 1. — Let ¢: M — N be a map of modules. The nth deviation of ¢
is the map
O, 0 0Xpyr) = Z (7I)n+17‘1|q) (Z xi>
Ic[n+1] el
of n + 1 variables. o

Let us, for clarity, point out that the diamond sign itself does not work as
an operator; the entity x ¢y does not possess a life of its own, and cannot exist
outside the scope of an argument of a map.

It is an immediate consequence of the definition that

O + -+ Xpyr) = Z (P<<>xi>-

1€m+1] i€l

Loosely speaking, the nth deviation measures how much ¢ deviates from
being polynomial of degree n. We have for example

o(x0y) = o(x + ) — o(x) — ¢(y) + ¢(0),
9(ox) = ¢(x) — ¢(0),
and, of course,
9(2) = ¢(0).
We abbreviate

o) (%x) =o(xo- - 0x).

n

DerinitioN 2. — The map ¢: M — N is polynomial of degree 7 if its nth
deviation vanishes:

(X, 0+ 0Xy41) =0
forany x, ..., x,4; € M. o

Observe that, when we speak of maps of degree 7, we always mean degree
n or less.
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ExampLE 1. — A map is polynomial of degree o if and only if it is constant.
A map is polynomial of degree 1 if and only if it is a translated group homo-
morphism. A

This definition of polynomiality is the classical one for abelian groups. It
is valid, but inadequate, for arbitrary modules, because it does not regulate
the behaviour of scalar multiplication.

We now present Roby’s notion of strict polynomial map, as given in sec-
tion 1.2 of [7]. Let €Alg = g€2Alg denote the category of commutative, unital
algebras over the base ring B.

DeriNITION 3. — A natural transformation
MR —-——>NR—
between functors €Alg — Set, will be called a strict polynomial map. o

Recall that a multi-ser is a set with repeated elements. When X is a multi-set,
we shall denote by |X]| its cardinality, that is, the number of elements counted
with multiplicity, and by #X the underlying set, called its support.

TueoreM 1 ([7], TuEorEME 1.1). — Let @: M — N be a strict polynomial map. For
any uy, . .. ,uy, € M there exist unique elements vy € N (only finitely many of which are
non-zero) such that

(P(MI®XI+"'+%k®x/€): Z 'UX@XXa
#XC[]

for all x; in all (commutative, unital) algebras.

DerinttioN 4. — If] in the theorem above, vy is non-zero only when |X| < n,
then ¢ is said to be of degree 7. o

ExampLE 2. — A map is strict polynomial of degree o if and only if it is
constant. A map is strict polynomial of degree 1 if and only if it is a translated
module homomorphism. A

§1. NUMERICAL MaPs

The base ring B of scalars will now be assumed binomial or numerical, by which
is simply meant a commutative ring with unity, equipped with binomial coef-
ficients. These may be invoked in two different ways. One way is to postulate

the existence of unary maps
(‘) : B — B,
n

subject to certain axioms, which is the approach taken by Ekedahl ([3]). Al-
ternatively, one may require B to be torsion-free and closed in Q ®; B under
the operations
rr—1)---(r—n+r1)
7> .
n!
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This was how Hall ([6]) originally introduced the concept. It is a non-trivial
fact that these two definitions yield the same class of rings. A proof can be
found in [8].

DerinitioN 5. — The map ¢: M — N is numerical of degree (at most) 7 if it
satisfies the following two equations:

O(x; 0+ 0 Xpyy) = O, Xy ooy Xpir €M
n
<p(rx)=/§(;><p(2x>, reB, xe M.

o

It is easy to prove that, over the integers, the second equation above is
implied by the first, so that the concepts of polynomial and numerical map
coincide.

It is clear that a strict polynomial map is also numerical of the same degree
(provided of course the base ring be numerical). If the base ring is a Q-algebra,
the two concepts coincide, for then every algebra is numerical.

ExampLe 3. — The map ¢ is of degree o if and only if it is constant, for when
n = o the above equations read:

¢(x:) = 9(0) = ¢(ox;) = o,
o) = () o0) = 900

ExampLE 4. — When 7 = 1, the equations read as follows:
0% + x,) — 9(x1) — 9(x2) + ¢(0) = ¢(x; © ;) = 0,
o) = (7 )ote) + (7)oon) = 0(0) + 7909 ~ o(0)

The map

v(x) = 9(x) — (o)
is then a module homomorphism. Conversely, any translate of a module ho-
momorphism is numerical of degree 1. A

ExampLe 5. — Let B = Z. It is a well-known fact, and not difficult to prove,
that the numerical (polynomial) maps ¢: Z — Z of degree » are precisely the
ones given by numerical polynomials of degree n:

ow =3 a(})

k=0
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ExampLE 6. — Let B = Z. The map
x
§Z®——>Z®_, I®x'_)1®(2)7
is numerical of degree 2, but not strict polynomial of any degree. The follow-

ing tentative diagram, where B: ¢ — 4, indicates the impossibility of defining
Ez11-

Sz
ZQZ[] 2 7@ 7] 1®1 ?
I@ﬁl i1®|3 l l
YAY A ZRZ 1Qa—=1® (4)
Z
Note that Z[z] is not a numerical ring; there is no such thing as (})! A
ExampLe 7. — Contrary to the situation for numerical maps, strict polyno-

mial maps are not determined by the underlying maps. The most simple
example is probably the following. Let B = Z, and define

04:2/2QA > Z/2®A, 1®x—1®x(x —1).

This is a non-trivial strict polynomial map of degree 2, and its underlying map
is zero!

We see here at play the well-known distinction between polynomials and
polynomial maps, the former class being richer than the latter. The point is
that the strict polynomial structure provides extra data, which make the zero
map strict polynomial of degree 2 in a non-trivial way. A

§2. PoLYNOMIALITY

Let us now conduct an investigation of polynomiality at its most general, and
indicate how this perspective provides a unifying view.

Let D < Moo be a finitary algebraic category, by which is simply meant an
equational class in the sense of universal algebra. Since D is a subcategory of
Mod, the objects of D are first of all B-modules, possibly equipped with some
extra structure.

For a set of variables V, let

Vb

denote the free algebra on V in D. That the free algebra exists is a basic fact
of universal algebra; see for example [1].

DeriNITION 6. — Let M be a module, not necessarily in D. An element of
MR {xyy ... 7x/€>D
is called a D-polynomial over M in the variables x, .. ., x.
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A linear form over M in these variables is a polynomial of the form

2.4 ®%,
for some u; € M. o

THEOREM 2: ExEDAHL’S ESOTERIC POLYNOMIALITY PRINCIPLE. — Let two modules
M and N be given, and a family of maps

P4 MR®A—->NR®A, AeD.
The following statements are equivalent:

A. For every D-polynomial p(x) = p(xy, . .., xp) over M, there is a unique D-polyno-
mial q(x) = q(xy, . . ., xp) over N, such that for all A € D and all a; € A,

04 (p(a)) = q(a).

B. For every linear form l(x) over M, there is a unique D-polynomial q(x) over N,
such that for all A € D and all a; € A,

04 (l(a)) = gq(a).

C. The map
MR ——>N® -

is a natural transformation of functors D — Set.

Proof. It is of course trivial that A implies B. Suppose statement B holds, and
consider a homomorphism x: A — B, along with finitely many elements #;

M. Define
I(x) = Z%j ® X,

and find the unique D-polynomial g satisfying B. Then, for any 4; € A, there is
a commutative diagram of the following form, proving that ¢ is natural:

MOA—L-N@A 2 ®a; q(a)
I®xl ll@x l l
MRB——~N®B 2.1 @ x(aj) —= q(x(a))

Thus, condition C holds.
Finally, suppose ¢ natural. We shall prove condition A. Given a D-polyno-
mial
P(xX) M@ (xey ... Xp)p s
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define
40) = 000y, (P

For any A € D and 4; € A, define the homomorphism
x: o xep A X o a

Then since ¢ is natural, the following diagram commutes:

Mty Xpy N® ey yxp) px) —q(x)

- =T

M®A o N®A pla) > qla)
The uniqueness of g is evident, which proves A. O
DeriniTION 7. — When the conditions of the theorem are fulfilled, we call ¢
a D-polynomial map from M to N. o

According to part B of the theorem, ¢4 maps

Z #j ® a;j — q(a)

for some (unique) D-polynomial g. In naive language, the Polynomiality Prin-
ciple amounts to the following. If we want the coefficients a; (in some algebra) of the
module elements u; to transform according to certain operations, the correct setting is the
category of algebras using these same operations.

ExampLe 8. — A Mod-polynomial map ¢: M — N is just a linear transforma-
tion M — N. This is because, by B above, ¢p will map > % ®; to 3, v ®@7; for
all 7; € B, and such a map is easily seen to be linear. Conversely, any module
homomorphism induces a natural transformation ¥ ® — > N ® —. A

ExampLE 9. — Let § be a B-algebra; then ¢Mtod < Mod. An s9Mod-polynomial
map M — N is a transformation

which is natural in the S-module A. This is the same as a natural transforma-
tion

MRH®s——>N®S)®s —,

which is an ¢Mted-polynomial map M® S — N®S; or, as noted in the previous

example, an S-linear map from M @ S to N® . A
ExampLe 10. — The €lg-polynomial maps are precisely the strict polynomial
ones.
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Confer Theorem 1. The equation

A (Z%j@ézj) = Z'z)X@aX.

shows that, intuitively, the coeflicients of the elements #; “transform as ordin-
ary polynomials”. A

Suppose now that B is numerical, and consider the category 912lg = g9Alg
of numerical algebras over B. According to the definition, an NAlg-polynomial
map is a natural transformation

o4 MR®A—>NRQA, AeNAlyg.

The Polynomiality Principle guarantees that, for every linear form ) # ® x;
over M, there is a unique numerical polynomial Y vx ® () over N such that
for all numerical algebras A and all 4; € A,

94 (ZM;‘@ﬂ/) = 2’@(@ (;) (1)

Intuitively, the coefhcients of the elements #; “transform as numerical (bino-
mial) polynomials”.

While the right-hand side of equation (1) is finite, there is no reason to
expect a uniform upper bound for its degree. Roby refers to this phenomenon
as a “somme localement finie”. In his definition of strict polynomial map, he
does not include such an assumption on bounded degree, but he circumvents
it by immediately restricting attention to homogeneous maps.

DeriniTioN 8. — We say that ¢ is of degree n if vx = o whenever [X| > »
(independently of the linear form >} # ® x;). 3
ExampLE 11. — We present an example of infinite degree. Let

U = (o, iy, thyy . . )

be free on an infinite basis. The map

a
04: URA - U®A, Z%@%HZ”%@ (;)

is NMAlg-polynomial, but not numerical of any finite degree 7. A

The final theorem of this note will establish that a map is numerical of
degree n if and only if it is 92Alg-polynomial of degree 7.

§3. THe UN1vERSAL NUMERICAL MAPs

There is an algebraic way of describing numerical maps, which turns out to
be very fruitful. Recall that the free module on a set M is the set

B[M] = {Zaj[x]] ‘ a; € B, ijM}
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of formal (finite) linear combinations of elements of M. If M itself is a module
(or even abelian group), it carries a multiplication

[x]D] = [x + 1],

which makes B[M] into a commutative, associative algebra with unity [o].
Consider now the map

M — B[M], x— [x],
and form its »th deviation
(ery - Xpgr) = [xr 0 0 X

THEOREM 3. — In the free algebra B[M], the following formula holds:
[x: 0+ 0] = ([xc] = [0]) -+ ([xn+:] — [0]) -

Proof. Simply calculate:

(X0 0 Xpqq] = Z (7I)n+17\1\ [Z xi‘|

IS[n+1] el

= (bu] = [o]) - - (Bxnt:] — [0])-

O
There is a filtration of B[M], given by the decreasing sequence of ideals
Li=([x;0 - 0oxp1] | xi €M)
= (7
+ — B, M, > -1
([rx] ;(k) [(gx} reB, xe ) n I
=0
DeriniTiON 9. — The nth augmentation algebra is the quotient algebra
B[M], = B[M]/I,.
3

TueoreM 4. — The map
8, M — B[M],, x— [x],

is the universal numerical map of degree n, in that every numerical map ¢: M — N of
degree n has a unique factorisation ¢ = 3, through it, as in the subsequent commutative
diagram:

M—> B[M],
o
¢ v
N

I0
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Proof. Given a map ¢: M — N, extend it linearly to a homomorphism

¢: B[M] — N.

The theorem amounts to the trivial observation that ¢ is numerical of degree
n if and only if it kills 7,. O

The augmentation quotients of a free module M are given by the next the-
orem.

THEOREM 5. — In the polynomial algebra Bty . . ., 3], let J,, be the ideal generated by
monomials of degree greater than n. Denote by (e;)%_, the canonical basis of BF. Then

v: Bt, ..., %)/J, — B[B*],
K [_<> el} ~ ([ - [o)*
1eX
is an isomorphism of algebras. In particular, B[B*], isa free module.
Proof- The map
Blt,...,t,] — B[B*],
X [,o } — ([ - [o)*
1eX

is clearly a homomorphism of algebras, and since it annihilates J,, it factors
via B[t;, ..., t.]/]». This establishes the existence of .
We now define the inverse of y. Each ¢; is nilpotent in B[z, ..., #.]/J,, and

so the powers
oS0 50

j=o0 j=o0 ]
are defined for any 4 € B. Accordingly, for an element
x=aIeI+~-+akekeBk,
we define

x: B[B¥] = Blty, ..., 11/]
[acer + - +agep] — T+ )™ - (T + 8)% + ]

We write this more succinctly as
[x] = (t+ 0 + ]
The map y is linear by definition, and also multiplicative, since

1([xDD) = x(lx + D) = @+ = @+ 0" + 1) = x((xDx ()

II
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It maps I, into J,, because, when x;, . .., x,, € Bf,
x([xr 0 0xp44]) = Z (_I)n-H_VlX Zx]
JS[n+1] 7€l
= Y (o Vit e
J<[n+1]
n+1

=JJ(@+e7-1) =0
j=I

Also, for r € B and x € B*,

(e £ 0)e) 1m0 £

1

3
e}

o () [z'x])

=@+~ - Zn: (;) i(—x)’”‘f (77) (x+ 0"
m=o \"/) 5

ST ,,,Z (1) @ror =9

= (p(t) + 1) — mZn:o <;) @,

where, in the last step, we have let p(t) = (14 1)* — 1. Referring to the Binomial
Theorem in [8], we have

G0+ =Y ()

m=0

but since the terms of index 7 + 1 and higher yield an (n + 1)st degree poly-
nomial, the above difference will belong to J,. We therefore have an induced
map

%: B[B1, — Blt, ..., t]/Jn-
The inverse relationship of y and y is easy to verify. O

ExampLE 12. — The isomorphism

v: B[t t,]/], — B[B*],

is given by
1 [0] £ [eroe]
ty — [oe] tt, = [er o]
t, — [oe,] t; > [e,0e,].

I2
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§4. PrROPERTIES OF NUMERICAL MAPS

Let us elaborate somewhat on the behaviour of numerical maps, and invest-
igate their elementary properties. To begin with, we note that the binomial
coeflicients themselves, considered as maps B — B, are numerical.

TueOREM 6. — The binomial coefficient x — () is numerical of degree n.
Proof. () is given by a polynomial in the enveloping Q-algebra. O
Next, we prove an alternative characterisation of numericality.

LeMMA 1. — For r in a numerical ring and natural numbers m < n, the following
Jformula holds:

SR ()-er ()00

k) \m m n—m

k=m

Proof. Induction on 7. O

THEOREM 7. — Let the map ¢: M — N be polynomial of degree n. It is numerical (of
degree n) if and only if it satisfies the equation

o(rx) = Zn: (=™ <;> (r ;in,; I) o(mx), reB, xeM.

Proof- This follows from the lemma:

Finally, not only do the »#th deviations of an nth degree map vanish, but its
lower order deviations are also quite pleasant.

THEOREM 8. — The map ¢: M — N is numerical of degree n if and only if the follow-
ing equation holds:

Oayx; o - - o apxy) = Z <;><p<§x>, a;€B, x; e M.

#X=[k]

1X|<n

3
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Proof. If the equation is satisfied, it follows that

oo on = ¥ (y)e(9r) -0

#X—[n+1] X
| X|<n
and .,
(p(deI) = Z <;(>(P <<> x) = Z (62)@ <<> x1> .
#X=[1] X k=0 k

1X|<n

Conversely, if ¢ is of degree n, a calculation in the augmentation algebra

B[M], yields

lacx; o - - o apxp] = ([arx:] — [0]) - - - ([agxz] — [0])

-2 (@[] 2 () oo

=1

=3 () () fome o]

The theorem follows after apphcatlon of o. O

Il
H MS

This proof is pure magic! It is absolutely vital that the calculation be
carried out in the augmentation algebra, as there would have been no way to
perform the above trick had the map ¢ been applied directly.

ExampLE 13. — Cubic maps ¢ are characterised by the following formule:

o(oax;) = (ﬂl o(ox1) + <6;I> O(x; 0 x1) + <a;> O(x; © X1 © xy)
> 0(x; ©x,)

B¢
) (Yot oo+ () (o on o
<“I> ( )(p(xI 0x,01,).

A

There results the following very explicit description of numerical maps.

O(arx; © ax, © azx;) =

TueOREM 9. — The map ¢: M — N is numerical of degree n if and only if for any
ty,...,up € M there exist unigue elements vy € N, X varying over multi-sets with
#X C [k] and | X| < n, such that

a
O(ay + - - + apup) = 2 (X) X,

X
foranyay, ..., a, €B.

14
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Proof. Assume ¢ is numerical of degree n. By the preceding theorem, we have

Qlags + - + apmp) = Z o) <.<> aiui)

IC[k] el

a
- ¢ <<> ”i)
Icz[;e] 4}&(;1 (X) eX

a
= ¢ (AO Mi) ;
#é[k] (X) 1€eX

| X|<n

which establishes the existence of the elements vy.

We now prove uniqueness. When § is a multi-set, we shall let deg¢ z denote
the degree or multipliciry of z in S. Let thus Q < [k] be a multi-set, with ¢; =
degq, 7, and let

S={X|#Xc[k] A Vi:degsi<g}.

Then
o(quity + -+ + qpg) = Z ()q()'ux = Z (?()vx
X Xe$§
=vQ + Z (;) vX.

Xes\{Q}

We see that v is determined by all vx such that X precedes Q in the lexico-
graphical ordering on the set of all multi-sets on [k], which can be identified
with N*. By induction, each vy is uniquely determined.

Conversely, assume ¢ is of the form specified in the theorem. It then readily

follows that
ux =@ (,0 Mz‘)
1eX

for all X. In particular, the nth deviations of ¢ will vanish, and also

= 2 ()= 2 () e2)

§5. NuMERICALITY VERSUS J12([g-PoLYNOMIALITY

And so, finally, we shall tie things together in our main theorem, and show
that the definition we have given of numerical map coincides with 92g-poly-
nomiality.

TueoreM 10. — The map ¢: M — N is numerical of degree n if and only if it may be
extended to a (unique) NAlg-polynomial map of degree n.

15
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Proof- If
oA MR——>N®—

is an MAlg-polynomial map of bounded degree n, it is clear from the Polyno-
miality Principle that
op: M - N

has the property of Theorem 9.

Conversely, let a numerical map ¢: M — N be given. Given elements
..., mp € M, fix the elements vy from Theorem 9. We may then extend
¢ in the obvious way to a natural transformation:

a
04: M®A - N®A, Zw@a/H;vX@ (x)
for any A € MAlg. O
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